

AV ACQUISITION 4001

CZTEROKANAŁOWY MODUŁ AKWIZYCJI

INSTRUKCJA OBSŁUGI 2018

amc VIBRO Sp. z o.o.

ul. Pilotów 2e, 31-462 Kraków T: +48 (12) 362 97 60 S: + 48 (12) 362 97 62 info@amcvibro.pl KRS nr: 0000618618 REGON: 364497010 NIP: 6772403385

www.amcvibro.pl

Spis treści

1.	Wpr	rowadzenie3
2.	Zaw	artość zestawu
3.	Dan	e techniczne4
4.	Dok	ładność pomiaru5
5.	Opis	s dostępnych złącz i kontrolek7
6.	Insta	alacja w systemie Windows® 77
7.	Prog	gram InstaCal7
8.	Kon	figuracja programu DASYLab® 168
9.	Użyo	cie modułu AVA 4001 w programie DASYLab® 168
10.	R	ecykling11
1	0.1.	Materiały niebezpieczne
1	0.2.	Urządzenia do recyklingu11

1. Wprowadzenie

AV ACQUISITION 4001 (AVA 4001) jest uniwersalnym, przenośnym, 4-kanałowym modułem akwizycji danych, przystosowanym do współpracy z czujnikami pracującymi w standardzie IEPE. Moduł posiada rozdzielczość 16 bitów oraz możliwość próbkowania z częstotliwością do 100 kS/s. Dostarczane sterowniki pozwalają na współpracę z programami DASYLab[®], LabVIEW[™] oraz MATLAB[®].

Cechy charakterystyczne modułu :

- » współpraca z czterema czujnikami drgań w standardzie IEPE
- » kontrola poprawności obwodu czujnika sygnalizacja ewentualnych przerw i zwarć w obwodzie
- » komunikacja oraz zasilanie przez port USB współpracującego komputera
- » bezproblemowa instalacja
- » kompaktowe wymiary modułu

2. Zawartość zestawu

W skład zestawu wchodzą:

- » moduł AVA 4001
- » płyta CD ze sterownikami
- » przewód USB
- » instrukcja obsługi
- » walizka

3. Dane techniczne

Parametry		
Liczba kanałów		4
Rodzaj wejść		IEPE 2,4 mA 24V
Rozdzielczość		16 bit
Próbkowanie		Do 100 kS/s dla jednego kanału, suma częstotliwości próbkowania wszystkich aktywnych kanałów max 400 kS/s
Zakresy pomiarowe		\pm 10V, \pm 5V, \pm 2V i \pm 1V wybierane programowo
Przesłuch		-80 dB (w paśmie od 0 do 25 kHz)
	zakres ±10V	±5,66 mV
Maksymalny błąd	zakres ±5V	±2,98 mV
bezwzględny	zakres ±2V	±1,31 mV
	zakres ±1V	±0,68 mV
Zasilanie		5V DC z portu USB komputera, maksymalny pobierany prąd 400 mA
Interfejs komunikacyji	ıy	USB 1.1, USB 2.0
Wilgotność		090%, bez kondensacji
Temperatura pracy		0+70°C
Wymiary		130 x 110 x 40 mm

4. Dokładność pomiaru

Na całkowitą dokładność pomiarową wpływają 3 rodzaje błędów:

- » Offset
- » Wzmocnienia
- » Nieliniowości

Głównym źródłem błędów urządzenia jest błąd związany z offsetem oraz wzmocnieniem. Błąd nieliniowości jest pomijalnie mały i może zostać zaniedbany. Urządzenie wyposażone jest w 16 bitowy przetwornik ADC, który zamienia sygnał analogowy na wartość od 0 do 65535. Poniżej przedstawiono idealną charakterystykę dla zakresu ±10 V.

Błąd offsetu mierzony jest w połowie zakresu pomiarowego. W Idealnym przypadku podanie na wejście sygnału o wartości 0 V powinno skutkować otrzymaniem wartości 32768 z przetwornika. Każdy inny otrzymany wynik oznacza wystąpienie błędu offsetu. Dla zakresu ± 10 V maksymalny offset wynosi ± 1,66 mV.

Błąd wzmocnienia związany jest z różnicą między nachyleniem rzeczywistej prostej względem idealnej charakterystyki, wyrażany jest w procentach, Dla zakresu ± 10 V błąd wzmocnienia wynosi ±0.04%.

Dodając do siebie błąd offsetu oraz wzmocnienia uzyskamy całkowity błąd pomiarowy urządzenia.

O M C V I B R O

5. Opis dostępnych złącz i kontrolek

Inputs – złącza BNC służące do podłączenia czujników w standardzie IEPE

Sensors Error – diody czerwone, ich świecenie sygnalizuje przerwę lub zwarcie w obwodzie czujnika wskazanego kanału

Power – dioda czerwona, jej ciągłe świecenie sygnalizuje dołączenie modułu do komputera i gotowość do pracy

USB – złącze USB typu B przeznaczone do podłączenia do komputera

6. Instalacja w systemie Windows[®] 7

Moduł AVA 4001 nie wymaga instalacji żadnych sterowników w systemie operacyjnym. Po dołączeniu go do portu USB komputera, system operacyjny automatycznie wykrywa nowe urządzenie, które

w menedżerze urządzeń widnieje jako Urządzenie USB interfejsu HID. Rysunek obok przedstawia prawidłowo wykryty moduł AVA 4001 w menedżerze urządzeń systemu Windows[®] 7.

W przypadku niektórych komputerów, zwłaszcza przenośnych, może zaistnieć sytuacja, kiedy to komputer ogranicza wartość prądu dostarczanego do urządzeń USB. W takim przypadku mogą pojawić się problemy z pracą modułu AVA np. błędna praca obwodów kontroli czujnika.

Uwaga!

W przypadku, gdy współpracujący komputer ogranicza ilość energii dostarczanej do urządzeń USB, moduł AVA może nie działać prawidłowo. Należy upewnić się, że komputer może dostarczyć prąd o wartości co najmniej 400 mA.

7. Program InstaCal

Celem zainstalowania programu narzędziowego InstaCal należy uruchomić plik Icalsetup.exe znajdujący się na dołączonej płycie CD w folderze /InstaCal/. Program poprosi o zgodę na rozpakowanie, a następnie instalację. Konieczne jest kliknięcie przycisków OK oraz SETUP w kolejno pojawiających się oknach, dzięki czemu pojawi się

na ekranie okno instalatora. Tutaj również należy potwierdzić instalację klikając dwukrotnie przycisk NEXT (nie zmieniając ścieżki dostępu), a następnie Install.

Kliknięcie przycisku Finish po zakończeniu instalacji zamyka okno instalatora. Do wprowadzenia koniecznych zmian niezbędne jest ponowne uruchomienie komputera.

Po ponownym uruchomieniu komputera należy uruchomić program InstaCal (Start → Wszystkie programy → Measurement Computing → InstaCal) przy dołączonym do komputera module AVA. Pojawi się wówczas okno zawierające listę wykrytych kart pomiarowych. Należy zaznaczyć pozycję nazwaną USB-1608FS, kliknąć przycisk OK, a następnie zamknąć program InstaCal.

Opisana powyżej czynność powinna być przeprowadzona jednorazowo przed pierwszym użyciem modułu w programach do akwizycji danych.

8. Konfiguracja programu DASYLab[®] 16

Przed rozpoczęciem pracy z modułem AVA w programie DASYLab® należy go odpowiednio skonfigurować w programie Configurator (domyślnie Start → Wszystkie programy → DASYLab → Configurator). W oknie programu, w zakładce Packages, powinna być zaznaczona pozycja o nazwie Measurement Computing. Jeżeli nie jest wybrano, trzeba ją zaznaczyć, po czym kliknąć przycisk Enable, co poskutkuje rozpoczęciem instalacji sterowników w programie DASYLab[®]. W kolejno pojawiających się oknach należy kliknąć odpowiednio przyciski NEXT, NEXT, Install oraz Finish.

ie and disable the driver for your installation. ckages collection wallable packages	Merclan			
idkages collection kvallable packages	Verelag			
kvallable packages	Maralan			
	ner sron	Status		
DataScan Solo	14.0.0.477.en	×		Disable
Data Translation	14.0.0.477.en	×		
Demo driver	14.0.0.477.en	×		
instruNet	14.0.0.477.en	×		
IOtech	14.0.0.477.en	×		
M	14.0.0.477.en	×		
Measurement Computing	14.0.0.477.en	×		
NI-DAQmx	14.0.0.477.en	×		
NuDAM	14.0.0.477.en	×		
Omega Engineering OMB/OM	14.0.0.477.en	×		
Newport/Omega OMB	14.0.0.477.en	×		
OMR	14.0.0.477.en	×		
Sound card	14.0.0.477 en	1		
kkage description				
ove.	e included in your licens			
ou only can use the selected backages if they are				
ou only can use the selected packages it they an				
nable or disable the packages either with a click of	in the respective buttons	s or a double-ci	ick in the sele	ction list.

Powyższa czynność powinna być wykonana tylko raz przy pierwszym użyciu modułu.

9. Użycie modułu AVA 4001 w programie DASYLab[®] 16

Po uruchomieniu poprawnie skonfigurowanego programu DASYLab[®] dostępne są dla użytkownika wejścia analogowe. Znajdują się one w zakładce *Modules* \rightarrow *Inputs/Outputs* ->*MCC-DRV*. W module AVA 4001 dostępne są tylko 4 wejścia analogowe, natomiast pozostałe cztery wejścia analogowe, wejścia cyfrowe, wyjścia i liczniki nie są dostępne.

Użycie modułu wejścia analogowego sprowadza się do przeciągnięcia go na obszar arkusza roboczego (podobnie działa dwukrotne kliknięcie i wskazanie położenia modułu na arkuszu roboczym). Pojawi się wówczas okno widoczne na rysunku, trzeba w nim zaznaczyć *All Channel 0..7* i zatwierdzić wybór kliknięciem przycisku OK.

Użytkownik ma możliwość skonfigurowania liczby aktywnych wejść analogowych, zakresu pomiarowego dla każdego kanału z osobna, a także częstotliwości próbkowania.

Dwukrotne kliknięcie ikony wejść analogowych na arkuszu roboczym powoduje otwarcie okna widocznego na ilustracji. Wymaga ono szerszego omówienia ze względu na fakt, iż to właśnie w nim można skonfigurować parametry modułu AVA do pracy w programie DASYLab[®]. Wyróżniamy w nim następujące obszary:

- 1. W polu *Module name* możemy nadać własną nazwę modułu, zaś pole *Description* przeznaczone jest na krótki opis.
- W tym obszarze możliwe jest włączanie wejść analogowych. Symbol rozłączonych niebieskich wtyków przedstawia wejście nieaktywne. Dwukrotne kliknięcie lewym przyciskiem myszy symbolu takiego wejścia powoduje jego aktywację, co sygnalizowane jest zmianą symbolu na połączone wtyki z symbolem błyskawicy.

Kliknięcie lewym przyciskiem myszy na aktywnym wejściu powoduje, że jego symbol zmienia kolor z czerwonego na zielony. Zmiany ustawień możliwe do wprowadzenia w kolejnych obszarach dotyczą właśnie tak zaznaczonego wejścia.

M	odule na	me: D	ev1-Ai0			Descripti	on:		
	0 1	2	3 4	5	6	7			
	SB-1608 ontinuou Hardw	IFS-Plu Is, 100 are	s (Devic 0 Hz, 10 Me	e 1))0 sam :asurer	ples / ment	olock	Read	FEDS	OK Cance
CI Ar	hannel n nalog typ	ame: be:	Ai0 Voltage		•	Units:	V		neip
R L-1	ange owerlim 0.000	it:			Uppe 10.00	r limit: 0 🚖			
T S	'emperat cale: C	ure Celsius		-	- Cu	rrent Chan -5.1	nel Valu 269398	,	

Rysunek obok przedstawia sytuację, gdy aktywne są cztery kanały wejściowe, zaś pierwszy jest zaznaczony do edycji ustawień.

W przypadku konieczności dezaktywacji wejścia można tego dokonać poprzez dwukrotne kliknięcie prawym przyciskiem myszy na ikonie aktywnego wejścia.

Uwaga!

W module AVA 4001 wejścia o numerach 4-7 nie są wykorzystywane. Ich ewentualna aktywacja będzie prowadzić do zmniejszenia maksymalnej dostępnej częstotliwości próbkowania.

Uwaga!

Użyte wejścia powinny być aktywowane kolejno – aktywacja kilku z nich poza kolejnością, np. wejść o numerach 0 i 3 z pominięciem wejść 1 i 2 może spowodować utratę danych.

ОПС ИНВКО

3. W obszarze tym znajdują się przyciski Hardware oraz Measurement. Bardziej istotny z punktu widzenia obsługi jest przycisk Measurement. Jego okno widoczne na rysunku obok, umożliwia zmianę częstotliwości próbkowania. W zakładce Analog Input podana jest aktualna częstotliwość próbkowania oraz rozmiar bufora danych. W celu zmiany tych ustawień należy

Analog Input Digital Input Counter Input Digital General Setup	Output		OK Cancel Help
Subsystem: USB-1608FS-Plus, SubsysAl Continuous, 1000 Hz, 100 samples / block Timebase	Current Buffer Level		
USB-1608FS-Plus Device 1 - Input HW Modify]	0%	

Timebase Settings		ОК
Scan rate:		Cancel
50000 👻	Hz 👻	
Block size:		
4991 👻	Auto block size	

wybrać pozycję USB-1608FS, DeviceX – Input HW, a następnie kliknąć przycisk Modify. Otworzy się wówczas okno widoczne na ilustracji. W oknie tym, w polu Scan rate, można wpisać żądaną częstotliwość próbkowania, wybrać odpowiednią jednostkę, zaś poniżej, w polu Blocksize można podać odpowiedni rozmiar bufora.

Uwaga!

Częstotliwość próbkowania poszczególnych kanałów nie może przekroczyć wartości 100 kHz, przy czym suma częstotliwości próbkowania wszystkich aktywnych kanałów to maksymalnie 400 kHz. Próba ustawienia za wysokiej częstotliwości próbkowania skutkuje zasygnalizowaniem błędu i propozycją przyjęcia najwyższej możliwej częstotliwości.

Timebase

Kliknięcie przycisku Hardware otwiera okno ustawień sprzętowych modułu AVA.

polu

W

SB-1608FS-Plus (Device 1)		
Composite / Synchronous input	0	К
Analog Input Digital Input Counter Input Digital Output	Can	cel
Settings Trigger	He	lp
Hardware Settings		
Acquisition Mode		
Continuous		
Charle Service		
Internal		
internal •		
Internal		
ktemal •		
Internal V		

Interesująca jest tutaj jedynie zakładka Analog Input. Po jej kliknięciu pojawią się zakładki: Settings oraz Trigger.

W zakładce *Settings*, w polu *Acquisition mode* można wybrać opcję: *N samples* oraz *Continuous*. Wybierając opcję *N samples* użytkownik może podać w polu *Sample count* liczbę próbek, którą powinien zebrać moduł AVA po włączeniu pomiaru. Po zebraniu podanej ilości próbek moduł kończy pracę.

ОПС И В В О

Inaczej sprawa wygląda w przypadku wybrania opcji *Continuous*, wówczas moduł nieprzerwanie przesyła dane do komputera.

Przechodząc do zakładki Trigger należy upewnić się, że jest odznaczone pole Trigger Enable.

- 1. W obszarze tym, w polu *Channel name* można nadać nazwę wybranego kanału. W polu *Analog type* powinna być podana wielkość *Voltage*, zaś w polu *Units* jednostka napięcia Volt.
- Obszar ten służy do ustawienia wzmocnień, a więc zakresu pomiarowego. Moduł AVA 4001 wyposażony jest we wzmacniacze wejściowe przełączane programowo, niezależnie dla każdego kanału.
- 3. Zakres pomiarowy każdego z kanałów może wynosić ±10V, ±5V, ±2V i ±1V. Stosownie do wymaganego zakresu należy wpisać odpowiednie skrajne wartości w pola *Lower limit* i *Upper limit*. Podane liczby powinny być równe co do wartości bezwzględnej. W przypadku wpisania różnych wartości, np. -1V i 2V, program zasygnalizuje błąd i zasugeruje użycie większej z nich, tj. -2V i 2V.

Po odpowiednim ustawieniu opisanych powyżej parametrów moduł AVA jest gotowy do pracy w programie DASYLAb[®]. Opis obsługi samego programu wykracza poza zakres niniejszej instrukcji, która ma na celu przygotowanie modułu do przetwarzania sygnałów i przesyłania danych pomiarowych do komputera.

10. Recykling

10.1. Materiały niebezpieczne

W systemie AVA 2001 nie wykorzystano żadnych materiałów niebezpiecznych określonych przez dyrektywę RoHS. Przepisy te potwierdzają, że ołów, rtęć, kadm, sześciowartościowy chrom, polibromowane bifenyle, polibromowany eter difenylowy lub inne materiały związane z baterią są ograniczone do ilości śladowych.

10.2. Urządzenia do recyklingu

Podczas wycofywania z eksploatacji urządzeń, minimalizuj wpływ wytwarzanych odpadów. W celu uzyskania aktualnych informacji dotyczących właściwego zbierania i recyklingu materiałów należy skontaktować się z lokalną administracją zarządzającą procesami usuwania odpadów.